

SOFTWARE ENGINEERING AND PROJECT MANAGEMENT

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER								
Course Code	21CS61	CIA Marks	50					
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50					
Total Hours of Pedagogy	40L	Exam Hours	03					
	CREDITS – 3							

COURSE PREREQUISITES:

• Fundamentals of software Development activities, Management functions.

COURSE OBJECTIVES:

- Outline software engineering principles and activities involved in building large software programs.
- Identify ethical and professional issues and explain why they are of concern to Software Engineers.
- Describe the process of requirement gathering, requirement classification, requirement specification and requirements validation.
- Infer the fundamentals of object-oriented concepts, differentiate system models, use UML diagrams and apply design patterns.
- Explain the role of DevOps in Agile Implementation.
- Discuss various types of software testing practices and software evolution processes.
- Recognize the importance Project Management with its methods and methodologies.
- Identify software quality parameters and quantify software using measurements and
- metrics. List software quality standards and outline the practices involved

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

Γ

1

	COURSE CONTENTS	
	MODULE - I	
Introd	action: The evolving role of software, The changing nature of software, Software engineering, A	
Process	Framework, Process Patterns, Process Assessment, Personal and Team Process Models, Process	
Techno	logy, Product and Process.	
Proces	s Models: Prescriptive models, Waterfall model, Incremental process models, Evolutionary	
process	models, Specialized process models.	8 Hours
Requir	ements Engineering: Requirements Engineering Task, Initiating the Requirement Engineering	
process	, Eliciting Requirements, developing use cases, Building the analysis model, Negotiating	
Require	ements, Validating Requirements, Software Requirement Document (Sec 4.2). Case Tools(Text	
book 5).	
	MODULE - II	
Introdu	nction, Modeling Concepts and Class Modeling: What is Object orientation? What is OO	
develop	ment? OO Themes; Evidence for usefulness of OO development; OO modeling history. Modeling	
as Desi	gn technique: Modeling, abstraction, The Three models. Class Modeling: Object and Class Concept,	
Link an	d associations concepts, Generalization and Inheritance, A sample class model, Navigation of class	0.11
models,	and UML diagrams	8 Hours
Buildi	ng the Analysis Models: Requirement Analysis, Analysis Model Approaches, Data modeling	
Concep	ts, Object Oriented Analysis, Scenario-Based Modeling, Flow-Oriented Modeling, class Based	
Modelin	ng, Creating a Behavioral Model.	
	MODULE - III	
Softw	are Testing: A Strategic Approach to Software Testing, Strategic Issues, Test Strategies for	
Conver	ntional Software, Test Strategies for Object -Oriented Software, Validation Testing, System	0 11
Testing	, The Art of Debugging.	8 Hours
Agile N	Iethodology: Before Agile – Waterfall, Agile Development.	
	MODULE - IV	
Introd	uction to Project Management: Introduction, Project and Importance of Project Management,	
Contrac	ct Management, Activities Covered by Software Project Management, Plans, Methods and	
Method	lologies, some ways of categorizing Software Projects, Stakeholders, Setting Objectives, Business	8 Hours
Case, P	roject Success and Failure, Management and Management Control, Project Management life cycle,	
Traditio	onal versus Modern Project Management Practices.	
	MODULE - V	
Activi	ty Planning: Objectives of Activity Planning, When to Plan, Project Schedules, Sequencing and	
Schedu	ling Activities, Network Planning Models, Forward Pass- Backward Pass, identifying critical path,	
Activity	Float, Shortening Project Duration, Activity on Arrow Networks.	
Softwa	are Quality: Introduction, the place of software quality in project planning, Importance of	8 Hours
	e quality, software quality models, ISO 9126, quality management systems, process capability	
	techniques to enhance software quality, quality plans.	
	COURSE OUTCOMES	
Upon Co	ompletion of this course, the students will be able to:	
CO	Course Outcome Description	Bloom's Taxonomy

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

							IVI	ANGALU	NU					
CO1			the actives actives actives active		nvolved	in softv	ware en	gineerin	g and a	nalyze	the rol	e of		CL2
CO2	Explain the basics of object-oriented concepts and build a suitable class model using modeling techniques									CL2				
CO3	Interpret various software testing methods and to understand the importance of agile methodology.									gile	CL2			
CO4	Appl	Apply the Concepts of project planning and quality management in software development CL2												
CO5	Illust	Illustrate the importance of activity planning and its models CL2										CL2		
						CO-PO	D-PSO	MAPPI	ING				ľ	
CO No.	Programme Outcomes (PO)									Sp	ramme ecific ne (PSO)			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1				1		2	1	1		2	1	1
CO2	2	2	2		2	1		2	2	2	2	2	2	1
CO3	2	2	2		2			2	2	3	1	2	3	1
<u>CO4</u>	2	2	2		2	-	-	2	3	3	2	2	3	1
CO5		2 stantial	$\frac{2}{(\mathbf{High})}$		2	2	2 arrata (N	2 Medium	3	3	2	2 1: Poor	3 (Low)	1
Assessm	ent wi				. Student		ng will b		ed using	Direct	and Ind			
<u>Sl. No.</u> 1	Cont		ssessmei Intorno		ription ment (C	(A T ^e	V	Veighta 100	e				<u>Marks</u> 50	
					luation (,		60 9					30 30	
		Assignm						40 9					20	
2	Sem	ester En	nd Exam	nination	``´´´			100					50	
						ASSES	SMEN	Γ DETA	AILS					
		Contin	nuous Ir	nternal .	Assessm	ent (CI	A) (50%	()						
Con	tinuou	s Interr		uation ((CIE) (6	<u>́</u>		Assignn ctivities		Sei	mester]	End Exa	um (SEE)	(50%)
]					I	I			<u>`</u>				0	
	%	Sylla	bus Cor 30%	verage	30	%	Syl	labus C 100%	overage		2	•	Coverage 0%	2
-+0 M			5070			/ U		MI					<u>0 /0</u> ЛІ	
M			MII					MI					411	
			MIII					MII						
					Μ	IV		MI					IIV	
					М			MV					1V	
Note:							I			1				
For Exa	iminat	ions (bo	oth CIE	and SI	EE), the	questio	on papel	rs shall	contain	the qu	estions	mappea	l to the a	ppropriate
						-				-			the assig	
ASSIG	NMEN	T TYP	PES WI	TH WH	EIGHT	AGES								

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05

4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands **SEE QUESTION PAPER PATTERN:**

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. Roger S. Pressman: Software Engineering-A Practitioners approach, 7th Edition, Tata McGraw Hill.
- 2. Michael Blaha, James Rumbaugh: Object Oriented Modelling and Design with UML, 2nd Edition, Pearson Education, 2005.
- 3. Bob Hughes, Mike Cotterell, Rajib Mall: Software Project Management, 6th Edition, McGraw Hill Education, 2018.
- 4. Deepak Gaikwad, Viral Thakkar, DevOps Tools from Practitioner's Viewpoint, Wiley.
- 5. Pankaj Jalote: An Integrated Approach to Software Engineering, Wiley India

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://onlinecourses.nptel.ac.in/noc20_cs68/preview
- 2. https://www.youtube.com/watch?v=WxkP5KR_Emk&list=PLrjkTql3jnm9b5nrggx7Pt1G4UAHeFlJ
- 3. http://elearning.vtu.ac.in/econtent/CSE.php
- 4. http://elearning.vtu.ac.in/econtent/courses/video/CSE/15CS42.html
- 5. https://nptel.ac.in/courses/128/106/128106012/ (DevOps)

(Effective from the Academic Year 2023 - 2024) VI SEMESTER						
Course Code	21DS62	CIA Marks	50			
Number of Contact Hours/Week (L: T: P: S)	3:0:2:0	SEE Marks	50			
Total Hours of Pedagogy	40L + 20P	Exam Hours	03			

COURSE PREREQUISITES:

• Fundamental knowledge of mathematical concepts, analytical skills and programming.

COURSE OBJECTIVES:

- Develop relevant programming abilities.
- Demonstrate proficiency with statistical analysis of data.
- Develop the ability to build and assess data-based models.
- Learn to execute statistical analyses.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS

MODULE - I

Introduction: The Ascendance of Data, What Is Data Science? , Visualizing Data, matplotlib,
Bar Charts, Line Charts, Scatterplots, Statistics, Describing a Single Set of Data, Correlation,
Simpson's Paradox, Some Other Correlational Caveats, Correlation and Causation, Dependence
and Independence, Conditional Probability, Bayes's Theorem, Random Variables, Continuous
Distributions, The Normal Distribution, The Central Limit Theorem.8
Hours

Text book 1: Chapter 1, Chapter 3, Chapter 5 and Chapter 6

MODULE - II

Working with data: Getting Data, stdin and stdout, Reading Files, Scraping the Web, Using APIs, Example: Using the Twitter APIs, Exploring the Data, Using NamedTuples, Dataclasses, Cleaning and Munging, Manipulating Data, Rescaling, An Aside: tqdm, Dimensionality
Reduction. The Curse of Dimensionality, Main Approaches for Dimensionality Reduction, Projection, Manifold Learning, PCA, Preserving the Variance, Principal Components, Projecting Down to d Dimensions.

Text book 1: Chapter 9 and Chapter 10 Text book 2: Chapter 8

MODULE - III

utonomous Institution MANGALURU

MANAGEMENT

Training: Models, Linear Regression, The Normal Equation, Computational Complexity,	
Gradient Descent, Batch Gradient Descent, Stochastic Gradient Descent, Mini-batch Gradient	
Descent, Polynomial Regression, Learning Curves, Regularized Linear Models , Ridge	-
Regression, Lasso Regression, ElasticNet Early Stopping, Logistic Regression, Estimating	8 Hours
Probabilities, Training and Cost Function Decision Boundaries, Softmax Regression	
Text book 2: Chapter 4	

MODULE - IV

Machine Learning and Deep Learning: Machine Learning, Modeling, What Is MachineLearning, Overfitting and Underfitting, Correctness, The Bias-Variance Tradeoff, FeatureExtraction and Selection, Neural Networks, Perceptrons, Feed-Forward Neural Networks,Backpropagation, Example: Fizz Buzz, Deep Learning, The Tensor, The Layer Abstraction,The Linear Layer, Neural Networks as a Sequence of Layers, Loss and Optimization, OtherActivation Functions, Softmaxes and Cross-Entropy, Dropout, Saving and Loading Models,Clustering, The Idea, The Model, Choosing k, Bottom-Up Hierarchical Clustering.

Text book 1: Chapter 11, Chapter 18, and Chapter 19

MODULE – V Network Analysis, Recommender System and MapReduce: Betweenness Centrality, Eigenvector Centrality, Directed Graphs and PageRank, Recommender Systems, Manual Curation, Recommending What's Popular, User-Based Collaborative Filtering, Item-Based Collaborative Filtering, Matrix Factorization, Create Table and Insert, Update, Delete, Select, Group By, Order By, Join, Subqueries, Indexes, Query Optimization, NOSql, MapReduce, Example: Word count, Why MapReduce, MapReduce more generally, Example: Analyzing status updates, Example: Matrix multiplication, An Aside: Combiners.

Text book 1: Chapter 22, Chapter 23, Chapter 24 and Chapter 25

COURSE OUTCOMES						
Upon completion of this course, the students will be able to:						
CO No.	Course Outcome Description	Bloom's Taxonomy Level				
CO1	Identify and demonstrate data using visualization tools and apply statistical analysis methods, to analyze and interpret data effectively in various real-world contexts.	CL3				
CO2	Apply techniques for data acquisition, exploring and preparing data, dimensionality reduction, to reduce dataset complexity while preserving key information.	CL3				
CO3	Apply gradient descent optimization techniques, to train linear regression models	CL3				

	effe	ctively.													
CO4	Den	nonstra	te the u	use of a	machir	ne learn	ing an	d deep	learnin	g mod	els to	imple	ment	t CL3	
04	efficient data-driven solutions for real-world problems.Demonstrate knowledge about the recommender system, MapReduce and							CLJ							
CO5	Den	nonstra	te kno	wledge	e abo	ut the	recor	nmend	er syst	tem, N	MapRe	duce	and		CL3
COJ	unde	erstand	the imp	portanc	e of da	ata ethic	cs.								CLJ
					LAF	BORAT	ORY C	COMPC	NENT:	8					
Exp. No.	Experiment Description CO No.											Ta	loom's konomy Level		
1	Demonstrate all the basic plots using Matplotlib package and python programming.										CO1		CL3		
2	Imp	lement	a pytho	on prog	ram to	perform	m File	Operati	ons on	Excel l	Datase	t.	CO2		CL3
3	Write a python program to perform Array operations using the Numpy										CO2		CL3		
4	Build an Artificial Neural Network by implementing the Backpropagation algorithm and test the same using appropriate data sets.									CO3		CL3			
5	Den	nonstrat	te Line	ar Regr	ression	operati	ion usii	ng pyth	on prog	rammi	ng.		CO4		CL3
6	Train a regularized logistic regression classifier on the in-build iris datasetusing scikit-learn. Train the model and report the best classificationCO4accuracy.									CO4		CL3			
7	Write a python program to perform Data Manipulation operations using Pandas package.CO4									CO4		CL3			
8	Dev	elop a l	MapRe	duce pr	rogram	to find	the gr	ades of	studen	ts in py	thon.		CO5		CL3
						CO-PC)-PSO	MAPPI	NG						
CO No.					Prog	ramme	Outcon	nes (PO)					Spe Outo	amme cific come SO)
<u>CO1</u>	1 3	2 3	3 3	4 2	5 3	6	7	8	9	10	11 2	12 2		1 3	2 2
CO1 CO2	3	3	3	2	3						2	2		<u>3</u>	2
CO3	3	3	3	2	3						2	2		3	2
CO4 CO5	3	3	3	2	3						2	2		3 3	22
	-	stantial	-	Z	3	2: Mod	lerate (N	 Medium)				r (Low	-	Z
Assessm				und SEE		SSESSI	MENT	STRAT	TEGY	g Direct					
Sl. No.		As	sessme	nt Desci	ription			Weight	age (%)				. Marl		
1		tinuous Intinuou				,		100 60					50 30		
-	Pra	actical S	ession (Laborate	ory Con	nponent))	40	%				20		
2	Sem	ester Er	d Exan	nination	(SEE)			100	%				50		

ASSESSMENT DETAILS

		ASSE	255WIENT DETAILS			
	Continuous Inter					
Continuous I	nternal Evaluatio	n (CIE) (60%)	Practical Sessions (40%)	Semester End Exam (SEE) (50%)		
Ι	II	III				
	Syllabus Coverag	e	Syllabus Coverage	Syllabus Coverage		
40%	30%	30%	100%	100%		
MI			MI	MI		
MII	MII		MII	MII		
	MIII		MIII	MIII		
		MIV	MIV	MIV		
		MV	MV	MV		

NOTE:

- Assessment will be both CIA and SEE.
- The practical sessions of the IPCC shall be for CIE only.
- The Theory component of the IPCC shall be for both CIA and SEE respectively.
- The questions from the practical sessions shall be included in Theory SEE.

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

SEE QUESTION PAPER PATTERN:

- 1. The question paper will have TEN full questions from FIVE Modules
- 2. There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- 3. Each full question may have a maximum of four sub-questions covering all the topics under a module.
- 4. The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

- Joel Grus, Data Science from Scratch-First Principles with Python, O' Reilly Publications, 2nd Edition, 2019, ISBN: 978-9352138326.
- 2. Aurelien Geron, Hands-on Machine Learning with Scikit-Learn & TensorFlow, O'Reilly Media Publications, 3rd Edition, 2022, ISBN: 978-93-5542-198-2.

REFERENCE BOOKS:

- Emily Robinson, Jacqueline Nolis, Build a Career in Data Science, Manning Publications, 1st Edition, 2020, ISBN: 9781638350156.
- Aurelien Geron, Hands-on Machine Learning with Scikit-Learn & TensorFlow, O'Reilly Media Publications, 3rd Edition, 2022, ISBN: 978-93-5542-198-2.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://onlinecourses.nptel.ac.in/noc21_cs69
- 2. https://onlinecourses.nptel.ac.in/noc22_cs32

MACHINE LEARNING

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER							
Course Code	21AI63	CIA Marks	50				
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50				
Total Hours of Pedagogy	40L	Exam Hours	03				
CREDITS – 3							

COURSE PREREQUISITES:

• Fundamental knowledge of statistics, probability, artificial intelligence and programming.

COURSE OBJECTIVES:

- Understand a wide variety of learning algorithms.
- Understand how to evaluate models generated from data.
- Understand the mathematical and statistical perspectives of machine learning algorithms.
- Apply the algorithms to a real problem, optimize the models learned and report on the expected accuracy that can be achieved by applying the models.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS

MODULE - I

Introduction: Machine Learning, Types of Machine Learning, Main challenges of Machine Learning, Testing and Validating, Concept Learning tasks, Concept Learning as search, Find S algorithm, Version Spaces and Candidate Elimination algorithm.

8 Hours

MODULE - II

Machine Learning Project: Working with real data, Explore and visualize the data, Prepare the data for Machine Learning, Select and train the model, Fine tune the model, Launch and maintain the system, MNIST, Training a binary classifier, Performance measures, Multiclass Classification, Error Analysis, Multilabel classification, Multioutput classification.

8 Hours

MODULE - III

Support Vector Machine, Decision Tree and Random Forest: Linear SVM classification, Nonlinear							
SVM classification, SVM Regression, Decision Tree representation, Appropriate problems for Decision							
Tree learning, Basic Decision Tree learning algorithm, Voting classifiers, Bagging and Pasting, Random							
Forests, Boosting, Stacking.	8 Hours						
MODULE - IV							
Bayesian Learning: Introduction, Bayes theorem, Bayes theorem and Concept learning, Maximum							

likelihood and least squared error hypothesis, Minimum description length principle, Bayes Optimal Classifier, Gibbs algorithm, Naive Bayes classifier, Text classification, Bayesian Belief Networks.

MODULE - V

Instance-Based and Reinforcement Learning: Introduction, k-Nearest Neighbor learning, LocallyWeighted Regression, Radial Basis Function, Case-Based Reasoning, Reinforcement Learning, Learningtask, Q-Learning.8 Hours

COURSE OUTCOMES

Upon completion of this course, the students will be able to:

СО	Course Outcome										Bloom's Taxonomy				
No.	Description									Level					
CO1	Dem	onstrate	the con	cepts of	Machin	e Learn	ing and	Concept	Learnir	ıg.				CL3	
CO2	Exan	nine the	usage o	f machi	ne learni	ing algo	rithms w	vith real-	world d	atasets.				CL3	
CO3	Appl	y variou	ıs machi	ne learn	ing algo	orithms f	for class	ification	probler	ns.				CL3	
CO4	Illust	rate the	Bayes t	heorem	and the	Bayesia	n belief	network	for bui	lding mo	dels fro	om data.		CL3	
CO5	Dem	onstrate	the con	cepts of	Instant	based ar	nd Reinf	orcemen	t-based	learning	5.			CL3	
						CO-P	O-PSC	MAP	PING						
													P	rogramme	
СО					Prog	ramme	Outcom	es (PO)					Spec	pecific Outcome (PSO)	
No.	1	2	3	4	5	6	7	8	9	10	10 11 12		1	2	
CO1	3	3	2	1	1	U	,	0	9	10	11	12	L		
CO2	3	3	2	1	2					1		1			
CO3	3	3	2	2	2	1			1						
CO4	3	3	2	2	2	1			1						
CO5	3	3	2	1	2	1									
	3: Substantial (High) 2: Moderate (Medium) 1: P					1: Poor	(Low)								

Sl. No.	Assessment Description	Weightage (%)	Max. Marks

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

1	Continuous Internal	Assessment (CIA)	100 %	50
	Continuous Inter	al Evaluation (CIE)	60 %	30
	Assignments		40 %	20
2	Semester End Exam	ination (SEE)	100 %	50
		ASSES	SMENT DETAILS	1
	Continuou	(CIA)		
Con	tinuous Internal Eval	uation (CIE) (60%)	Assignment/	Semester End Exam (SEE) (50%)
]	I II	III	Activities (40%)	
	Syllabus Co	verage	Syllabus Coverage	Syllabus Coverage
40	% 30%	30%	100%	100%
Ν	11		MI	MI
М	III MII		MII	MII
	MIII		MIII	MIII
		MIV	MIV	MIV
		MV	MV	MV

appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

SI.	Assignment Description	Max. Weightage (%)	Max. Marks	
No.				
1	Written Assignments	25 %	05	
2	Quiz	10 %	02	
3	Case Studies	25 %	05	
4	Seminar/Presentation	15 %	03	
5	Peer - to - Peer Learning	10 %	02	
6	Activity Based Learning	50 %	10	
7	Project Based Learning	50 %	10	
8	Field Work + Report	50 %	10	
9	Industry Visit + Report	50 %	10	
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10	
	NPTEL Certification	75 %	15	
11	Any other Innovative Assignments (CL4 and above)	50 %	10	

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- Aurelien Geron, Hands-on Machine Learning with Scikit-Learn & TensorFlow, O'Reilly Media Publications, 3rd Edition, 2022, ISBN: 978-93-5542-198-2.
- 2. Tom M Mitchell, Machine Learning, McGraw Hill Education Pvt. Ltd, 1st Edition, 2017, ISBN: 978-1-25-909695-2.
- Ethem Alpaydin, Introduction to Machine Learning, PHI Learning Pvt. Ltd., 3rd Edition, 2014, ISBN: 978- 8120350786.
- Manaranjan Pradhan and U Dinesh Kumarg, Machine Learning with Python, Wiley Publications, 2019, ISBN: 9788126579907.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://onlinecourses.nptel.ac.in/noc23_cs18
- 2. https://onlinecourses.nptel.ac.in/noc23_cs87

INFORMATION STORAGE MANAGEMENT

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER								
Course Code	21IS641	CIA Marks	50					
Number of Contact Hours/Week (L:T:P:S)	3:0:0:0	SEE Marks	50					
Total Contact Hours	40	Exam Hours	03					
	CREDITS - 3	6						

Prerequisites:

• Knowledge of Data Communication, Database Management System and Data Warehousing

Course Objectives:

This course will enable students to:

- Describe the importance of data, information, and storage infrastructure.
- Review the evolution of storage technology.
- Understand the key management requirements of a storage system.
- Introduce RAID and intelligent storage systems.
- Explain the storage networking technologies and virtualization.
- Discuss CAS, business continuity, backup and recovery.

Teaching-Learning Strategy:

Following are some sample strategies that can be incorporated for the Course Delivery:

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem-Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS

MODULE - I

Introduction to Information Storage: Information Storage, Evolution of Storage Architecture, Data Center Infrastructure, Virtualization and Cloud Computing.

Data Center Environment: Application, Database Management System (DBMS), Host (Compute), Connectivity, Storage, Disk Drive Components, Disk Drive Performance, Host Access to Data, Direct-

8 Hours

	÷	
Attached	d Storage, Storage Design Based on Application Requirements and Disk Performance.	
	MODULE - II	
RAID La Intellige	rotection: RAID - RAID Implementation Methods, RAID Array Components, RAID Techniques, evels, RAID Impact on Disk Performance, RAID Comparison, Hot Spares. ent Storage Systems: Components of an Intelligent Storage System, Storage Provisioning, Types of nt Storage Systems.	8 Hours
	MODULE - III	
Compon Services	Channel Storage Area Networks - Fibre Channel: Overview, The SAN and Its Evolution, nents of FC SAN, FC Connectivity, Switched Fabric Ports, Fibre Channel Architecture, Fabric , Switched Fabric Login Types, Zoning, FC SAN Topologies. : iSCSI, FCIP.	
Systems	k-Attached Storage (NAS) : General-Purpose Servers versus NAS Devices, Benefits of NAS, File and Network File Sharing, Components of NAS, NAS I/O Operation, NAS Implementations, NAS ring Protocols, Factors Affecting NAS Performance, File Level Virtualization.	
	MODULE - IV	
Failure A Backup Consider	ction to Business Continuity: Information Availability, BC Terminology, BC Planning Life Cycle, Analysis, Business Impact Analysis, BC Technology Solutions. and Archive: Backup Purpose, Backup Considerations, Backup Granularity, Recovery rations, Backup Methods, Backup Architecture, Backup and Restore Operations, Backup ies, Backup in NAS Environments, Backup Targets, Data Archive, Archiving Solution eture.	8 Hours
	MODULE - V	
Replicat Creating Remote	 Replication: Replication Terminology, Uses of Local Replicas, Replica Consistency, Local ion Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Multiple Replicas. Replication: Modes of Remote Replication, Remote Replication Technologies, Three Site ion, Data Migration Solutions. 	8 Hours
	COURSE OUTCOMES	
Upon co	mpletion of this course, the students will be able to:	
CO No.	Course Outcome Description	Bloom's Taxonomy Level
CO1	Describe the evolution of information storage architecture and data center environment. Also identify the storage requirements for the applications.	CL3
CO2	Explain the importance of RAID and an intelligent storage system for the effective maintenance and protection of data. Also, identify the disk load in different types of RAID.	CL3

SAHYADRI SAH

CO3	Discuss the different storage networking technologies including FC SAN, IP SAN and NAS.											CL2			
CO4	-	Explain the process of business continuity, backup, and recovery to ensure information availability for vital business operations.										CL2			
CO5	-	ain the ess cont	-	of rep	lication	to min	imize th	ne risk	of busin	ess dis	sruption	and en	sure		CL2
	•					CO-PO	D-PSO	MAPP	ING						
CO No.	Programme Outcomes (PO)									Spec	amme cific e (PSO)				
	1	2	3	4	5	6	7	8	9	10	11	12	1		2
CO1	3	3	2									2	1		2
CO2	3	3	2		2							2	1		2
CO3	3	3	3		2							2	1		2
CO4	3	3	3		2							2	1		2
CO5	3	3	3									2	1		2
3	8: Subs	tantial	(High)			2: Mod	erate (N	Iedium)		•	1: Poor	(Low)		
Assessm	ent wi	ll be bot	h CIA a	nd SEE			MENT		TEGY ssed using	g Direc	t and In	direct me	ethods		
Sl. No.		As	sessme	nt Desci	ription		1	Veighta	age (%)			Max.	Mark	s	
1	Cont	inuous	Interna	l Assess	sment (C	CIA)		100	%			5	50		
	(Continuo	ous Inter	nal Eva	luation (CIE)		60 % 30				30	0		
	A	Assignm	ents					40 % 20							
2	Seme	ester En	d Exan	nination	(SEE)			100 % 50				50			
						ASSES	SMENT	F DET	AILS						
		Contin	nuous Ir	nternal	Assessm	nent (Cl	(A) (50%	6)							
Con	tinuou	s Interr	nal Eval	uation	(CIE) (6	60%)		Assign	ment/ s (40%)	S	emeste	r End Ex	xam (S	SEE)	(50%)
]	[II		Ι	II	А		3 (40 /0)						
		Sylla	bus Co	verage			Syl	labus (Coverage		S	Syllabus	Cover	rage	
40	%		30%		30	%		100	%			10	0%		
М	Ι							Μ	Ι			Ν	1 I		
М	II							Μ	II			Μ	II		
			M III					MI	II			М	III		
			M IV		М	IV		MI	V			М	IV		
					М	V		Μ	V			Μ	[V		
Note: F appropri assignm	iate Bl						-					-			d to the ough the
				ASS	SIGNM	ENT T	YPES V	VITH	WEIGH	TAGE	S				
Sl. No.				Assigni	ment De	escripti	on			Max	. Weigł	ntage (%	6) I	Max.	Marks

1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer-to-Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands.

SEE Question Paper Pattern:

- The question paper will have **TEN** full questions from **FIVE** Modules.
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

Reference Books:

- Somasundaram Gnanasundaram, Alok Shrivastava: "Information Storage and Management", 2nd Edition, EMC Education Services, Wiley India Publications. ISBN: 978-81-265-3750-1
- 2. Ulf Troppens, Rainer Erkens and Wolfgang Muller: Storage Networks Explained, Wiley India, 2003.
- 3. Rebert Spalding: Storage Networks, The Complete Reference, Tata McGraw Hill, 2003.
- 4. Richard Barker and Paul Massiglia: Storage Area Networks Essentials A Complete Guide to Understanding and Implementing SANs, Wiley India, 2002.

Reference Web Links And Video Lectures (E-Resources):

1. https://nptel.ac.in/courses/106108058

INDUSTRIAL IOT AND ANALYTICS

(Effective from the Academic Year 2023 - 2024)

Course Code	21IS642	CIA Marks	50				
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50				
Total Hours of Pedagogy	40L	Exam Hours	03				
CREDITS – 3							

COURSE PREREQUISITES:

• Fundamental knowledge of Industrial IOT Systems.

COURSE OBJECTIVES:

- To provide students with good depth of knowledge of Designing Industrial IOT Systems for various application.
- Knowledge for the design and analysis of Industry 4.0 Systems.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS	
MODULE - I	
Basics of Internet of Things: Introduction to IoT, Physical Design of IoT, Logical Design of IoT, IoT Enabling Technologies, IoT Levels and Deployment Templates	8 Hours
MODULE - II	
Industrial IoT (IIoT) Systems: The Various Industrial Revolutions, Role of Internet of Things (IoT)	
& Industrial Internet of Things (IIoT) in Industry, Industry 4.0 revolutions, Support System for Industry 4.0,	8 Hours
Smart Factories.	
MODULE - III	
Implementation systems for IIoT: Sensors and Actuators for Industrial Processes, Sensor networks,	
Process automation and Data Acquisitions on IoT Platform, Microcontrollers and Embedded PC roles in	8 Hours
IIoT, Wireless Sensor nodes with Bluetooth, WiFi, and LoRa Protocols and IoT Hub systems.	
MODULE - IV	

		•							rogramm laintenan					8 H	Hours
						M	ODUL	E V							
Industr	ial IoT	- Appli	cations:	Health	care, Po				lanageme	ent & (Juality	Control,	Plant	Τ	
								•	y Manage			,		8 H	Iours
5		5 <	e						, J						
Upon co	mpleti	on of th	is course	e, the stu					<u> </u>						
CO No.	Course Outcome Description									Taxo	om's momy				
C01	Disc	uss the f	undame	ntals of	IoT syst	ems									evel L2
CO2			of theory				Industria	al IoT Sy	stems.						L3
CO3				-				-	s by using	g Indus	trial Io7			C	L3
CO4			a Analyti						6 x -					C	L3
CO5		ity to im bility.	plement	real fie	id proble	em by ga	ained kn	owledge	e of Indus	strial ap	oplicatio	ons with	loT	C	L4
		j-				CO-PO	D-PSO	MAPPI	NG						
													P	ogran	nme
CO										Specif					
No.					-		_					come	(PSO)		
C01	1 2	2 1	3	4	5	6	7	8	9	10	11	12	1		2
CO1 CO2	2	1	3										1		1
CO3	2	1	3				2						1		1
CO4	2	1					2						1		1
CO5	2	1											1		1
•	3: Sub	stantial	(High)			2: Mod	erate (N	<u>ledium</u>				1: Poor	(Low)		
Assessm	nent wi	ll be bot	th CIA a	nd SEE		SSESS ts learni			T EGY sed using	Direct	and Inc	lirect me	thods:		
Sl. No.		As	ssessme	nt Desc	ription		1	Weighta	ge (%)			Max.	Mark	s	
1			Interna			,		100					50		
		Assignm	ous Inter ients	nai Eva	luation ((CIE)		60 40					80 20		
2		0	nd Exan	ninatior	(SEE)			100					50		
						ASSES	SMENT	Г DETA	AILS						
		Conti	nuous Ir	nternal	Assessn	nent (CI	A) (50%	(0)							
Con	tinuou	s Interi	nal Eval	uation	(CIE) (6	60%)		Assignr ctivities		Se	mester	End Exa	ım (Sl	EE) (5	0%)
	I		II		Ι	II									
)%	Sylla	ubus Cor 30%	verage	3()%	Syl	llabus C 1009	overage		S	yllabus	<u>Covei</u> 0%	age	
	19 <u>70</u> 11		50 70		ગ	70		M					<u>0%</u> /II		
			MII					MI					111		
			MIII					MI	Ι			Μ	III		
					Μ	IV		МΓ	V			Μ	IV		
						IV		MV	-				IV		

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands **SEE OUESTION PAPER PATTERN:**

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. Dimitrios Serpanos & Marilyn Wolf, "Internet of Things (IOT) System Architectures, Algorithms, Methodologies" Springer International publishing, AG 2018
- 2. Industry 4.0: The Industrial Internet of Things Alasdair Gilchrist Publications.
- 3. Dr. OvidiuVermesan, Dr. Peter Friess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River Publishers.
- 4. Embedded System: Architecture, Programming and Design by Rajkamal, TMH3.
- 5. The Concept Industry 4.0 "An Empirical Analysis of Technologies and Applications in Production Logistics" Authors: Bartodziej, Christoph Jan Springer: Publication in the field of economic science.
- 6. The Internet of Things: Key Applications and Protocols, ISBN: 978-1-119-99435-0, 2nd Edition, Willy Publications.
- 7. Internet of Things- From Research and Innovation to Market Deployment; By Ovidiu & Peter; River Publishers Series.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://www.cisco.com/c/en/us/solutions/internet-of-things
- 2. https://www.tibco.com/reference-center/what-is-iiot

SOCIAL NETWORK ANALYSIS

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER						
Course Code	21CS643	CIA Marks	50			
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy40LExam Hours03						
	CREDITS – 3					

COURSE PREREQUISITES:

• Fundamental knowledge of Mathematics, Data Structures and algorithms.

COURSE OBJECTIVES:

- To understand the science of networks, including the principles of graph theory and key statistical properties of network.
- To acquire a working knowledge of descriptive network analysis techniques.
- Gain proficiency in evaluating network structure through the analysis of nodes and edges, calculating network diameter, and determining average path length To visualize social networks.
- Study the dynamics of information and influence propagation on networks, including the basic cascade model and strategies for influence maximization.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS	
MODULE - I	
Introduction to social network analysis and Descriptive network analysis: Introduction to new science	8 Hours
of networks. Networks examples. Graph theory basics. Statistical network properties. Degree distribution,	
clustering coefficient. Frequent patterns. Network motifs. Cliques and k-cores.	
MODULE - II	
Network structure, Node centralities and ranking on network: Nodes and edges, network diameter and	8 Hours
average path length. Node centrality metrics: degree, closeness and betweenness centrality. Eigenvector	

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

centralit	y and F	PageRan	ık. Algoi	rithm HI	ITS.									
						Μ	ODUL	E - III						
Networl	com	munitie	s and A	Affiliati	on netv	works: 1	Network	s com	nunities.	Graph	partitio	oning an	d cut	8 Hours
metrics.	Edge	betwee	enness.	Modula	rity clu	stering.	Affiliat	ion net	work ar	nd bipa	rtite gr	aphs. 1-	mode	
projectio	ons. Re	comme	ndation s	systems.										
						Μ	ODUL	E - IV						
Informa	tion a	nd infl	luence]	propaga	tion or	n netwo	rks and	l Netwo	ork visu	alizatio	on: Soc	ial Diff	usion.	8 Hours
Basic ca	scade 1	nodel. I	nfluence	e maxim	ization.	Most inf	Iuential	nodes i	n netwo	rk. Netv	vork vis	ualizatio	on and	
graph la	youts.	Graph s	ampling	. Low -d	limensic	onal proje	ections.							
MODULE - V														
Social n	ocial media mining and SNA in real world: FB/VK and Twitter analysis: Natural language processing									8 Hours				
and sent	iment r	nining.	Properti	es of lar	ge socia	al networ	ks: frier	nds, con	nections	, likes, 1	e-tweet	s.		
						COUR	SE OU	TCOM	IES					
Upon co	mpleti	on of th	is course	e, the stu	dents w	ill be ab	le to:							DI 1
CO No.	Course Outcome Description								Bloom's Taxonomy Level					
CO1	1 Demonstrate proficiency in applying the principles of the new science of networks, exemplifying their understanding through the identification and analysis of network structures.													
CO2	Evaluate and apply advanced concepts in social network analysis, for comprehensive understanding of network structures and node centrality metrics.							CL3						
CO3	CO3Analyze and differentiate various network community detection techniques.CL3								CL3					
CO4					•	ifying an network			•	ance of	the mos	st influer	ntial	CL3
CO5						iques, ind nd Twitte		natural	languag	e proce	ssing ar	nd sentin	nent	CL3
	•					CO-PC)-PSO	MAPPI	NG				•	
CO No.					Progr	ramme (Outcom	nes (PO))				S	ogramme pecific ome (PSO)
110.	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	1	~		,	2		10		2	2	2
CO2	3	3	2					2				2	2	2
CO3	3	3	3					2				2	2	2
CO4	3	3	3					2				2	2	2
CO5	3	3	3					2				2	$\frac{2}{(\mathbf{I} \cdot \mathbf{r})}$	2
		stantial	· • ·	.nd SEE.	A	2: Mode SSESSI ts learnin	MENT	STRAT	TEGY	g Direct		1: Poor	<u> </u>	
Sl. No.				nt Desci			1	Weighta					Marks	
1				l Assess mal Eval		,		100 60					50 30	
		Assignm			uation (40					20	
2				nination	(SEE)			100				5	50	

ASSESSMENT DETAILS

С	ontinuous Interna	Assessment (CL	A) (50%)	Semester End Exam (SEE) (50%)		
Continuous L	inuous Internal Evaluation (CIE) (60%) Assignment/ Activities (40%)					
Ι	II	III				
Syllabus Coverage			Syllabus Coverage	Syllabus Coverage		
40%	30%	30%	100%	100%		
MI			MI	MI		
MII	MII		MII	MII		
	MIII		MIII	MIII		
		MIV	MIV	MIV		
		MV	MV	MV		

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands **SEE QUESTION PAPER PATTERN:**

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. David Easley and John Kleinberg. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World." Cambridge University Press 2010.
- 2. Eric Kolaczyk, Gabor Csardi. Statistical Analysis of Network Data with R (Use R!). Springer, 2014
- 3. Stanley Wasserman and Katherine Faust. "Social Network Analysis. Methods and Applications." Cambridge University Press, 1994.
- 4. Guandong Xu, Yanchun Zhang and Lin Li, -Web Mining and Social Networking Techniques and

applications, First Edition, Springer, 2011.

- 5. Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectivelyl, IGI Global Snippet, 2008.
- 6. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, —Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modellingl, IGI Global Snippet, 2009.
- 7. John G. Breslin, Alexander Passant and Stefan Decker, The Social Semantic Webl, Springer, 2009.

DRONE TECHNOLOGY AND APPLICATIONS

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER						
Course Code	21IS644	CIA Marks	50			
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy	40L	Exam Hours	03			
	CREDITS – 3					

COURSE PREREQUISITES:

• Fundamental knowledge of Drone technology.

COURSE OBJECTIVES:

- To understand the basics of drone technology. •
- To learn and understand the fundamental methods of Surveying with Drone.
- To understand the concepts of Image processing and Photogrammetry of drone. •
- To understand the Mapping and data modeling in drones.
- To know about the various applications of drone.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS	
MODULE - I	
Introduction to Drones: Introduction to Drones, History of Drone/UAS/UAVs, payload, battery life, Specs	8 Hours
for good results, Regulations of DGCA and Drone license, Pre and Post Flight planning- Flight execution	
and photography, data collection- Image Format, GSD, Scale and Resolution.	
MODULE - II	
Surveying with Drones: Consideration for hardware selections, comparison on surveying drone and its	8 Hours
accuracy, Techniques of controlling errors, Consideration of GCP in vertical and horizontal accuracies,	
Planning and estimation of drone surveying jobs, Autonomous flight vs. manual and hybrid flight profiles.	

MODULE - III

			2	ЗАНУА		OLLEGE (An Auto	INEERIN	G & MAN		ENT			
Image	Proces	sing ar	nd Phot	ogrami	netry: 1	Aerial Tr	riangula	ation, p	ost proce	essing	softwar	es, Ana	lyzing	8 Hours
Data, C	Contouring, DEM, DSM, Cut, Fill, and Volumetric Measurement Calculation and orthophoto								photo	0 110415				
generatio	on.												-	
						M	ODUL	E - IV						
	-		-		-	oping and		-	-	ndersta	nding R	TK, PP	K and	8 Hours
							ODUI							
Applications of Drone Technology: Application of drone for Surveying & Mapping-Construction, Irrigation and Agricultural, Engineering Land Survey and Transportation.									iction,	8 Hours				
						COUR	SE OU	TCOM	IES					
Upon co	mpleti	on of th	is course	e, the stu	idents w	ill be abl	e to:							
CO No.					Cou	rse Out	come	Descrip	tion				ŗ	Bloom's Faxonomy Level
CO1	Know	v about	a variou	s type o	f drone	technolog	gy and i	its funda	mentals.					CL2
CO2	Exec	ute the	suitable	operatir	ig procee	dures for	survey	ing a dro	one.					CL3
CO3	Selec	t appro	priate In	nage Pro	cessing	and Phot	ogramı	netry fo	r Drones.					CL3
CO4	Deve	lop a m	apping a	and mod	leling for	r data pro	cessing	g in dron	es.					CL3
CO5	Discu	iss the a	applicati	ons of d	rones in	construc	tion, ir	rigation,	agricultu	ire, and	l in land	survey.		CL4
						СО-РО	-PSO	MAPPI	NG					
CO No.					-	amme O	Outcom	nes (PO))			1	S	gramme pecific ome (PSO)
001	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1 CO2	2 2	1	<u> </u>			2							1	1
CO2 CO3	2	1				2							1	1
CO4		1		<u> </u>										
	2	1	1			1							1	1
	22	1				1							-	1
CO5	2	1	(High)			1 2: Mode	rate (N	/ ledium))			1: Poor	1 1	-
CO5 3 Assessm	2 3: Subs	1 stantial	th CIA a		A . Studen	_	AENT	STRAT	FEGY sed using	Direct		lirect me	1 1 (Low)	-
CO5 Assessm Sl. No.	2 B: Subs	1 stantial Il be bot As	th CIA a	nt Desc	A . Studen ription	2: Mode SSESSN ts learnin	AENT	STRAT De assess Weighta	EGY sed using ge (%)	Direct		lirect me Max.	1 (Low) thods: Marks	-
CO5 3 Assessm	2 B: Substant will Cont	1 stantial Il be bot As inuous	th CIA a ssessmer Interna	nt Desc 11 Assess	A Studen ription sment ((2: Mode SSESSN ts learnin CIA)	AENT	STRAT De assess Weighta 100	FEGY sed using ge (%) %	Direct		lirect me Max.	1 (Low) thods: Marks 50	-
CO5 3 Assessm Sl. No. 1	2 B: Subs ent will Cont	1 stantial Il be bot As inuous Continuo Assignm	th CIA a ssessmen Interna ous Inter nents	nt Desc I l Assess rnal Eva	A . Studen ription sment (C luation (2: Mode SSESSN ts learnin CIA)	AENT	STRA De assess Weighta 100 60 40	FEGY sed using ge (%) % %	Direct		lirect me Max.	1 (Low) (thods: Marks 50 30 20	-
CO5 Assessm Sl. No.	2 B: Subs ent will Cont	1 stantial Il be bot As inuous Continuo Assignm	th CIA a ssessmet Interna ous Inter	nt Desc I l Assess rnal Eva	A . Studen ription sment (C luation (2: Mode SSESSN ts learnin CIA)	AENT	STRAT be assess Weighta 100 60	FEGY sed using ge (%) % %	Direct		lirect me Max.	1 (Low) :thods: Marks 50 30	-
CO5 3 Assessm Sl. No. 1	2 B: Subs ent will Cont	1 stantial Il be bot As inuous Continuo Assignm	th CIA a ssessmen Interna ous Inter nents	nt Desc I l Assess rnal Eva	A . Studen ription sment (C luation (n (SEE)	2: Mode SSESSN ts learnin CIA)	MENT	STRA be assess Weighta 100 60 40 100	FEGY sed using ge (%) % % %	Direct		lirect me Max.	1 (Low) (thods: Marks 50 30 20	-
CO5 3 Assessm Sl. No. 1	2 B: Subs ent will Cont	1 stantial ll be bot As inuous Continuo Assignm ester En	th CIA a ssessmen Interna ous Inter nents nd Exan	nt Desc Il Assess rnal Eva ninatior	A . Studen ription sment (C lluation (n (SEE)	2: Mode SSESSN ts learnin CIA) (CIE)	MENT g will t	STRA De assess Weighta 100 60 40 100 Γ DET	FEGY sed using ge (%) % % %		and Inc	lirect me	1 (Low) thods: Marks 50 30 20 50	-
CO5 3 Assessm Sl. No. 1 2 Con	2 B: Subsection Semicontermination of the se	1 stantial ll be bot As inuous Continuo Assignm ester En Contin	th CIA a ssessmen Interna ous Inter nents nd Exan nuous In nuous In	nt Desc al Assess mal Eva nination nternal	A Studen ription sment (C lluation (h (SEE) Assessm (CIE) (6	2: Mode SSESSN ts learnin CIA) (CIE) ASSESS nent (CIA 50%)	MENT g will t	STRA De assess Weighta 100 60 40 100 Γ DET	FEGY sed using ge (%) % % % % % MLS nent/		and Inc	lirect me	1 (Low) thods: Marks 50 30 20 50	
CO5 3 Assessm Sl. No. 1 2	2 B: Subsection Semicontermination of the se	1 stantial Il be bot Assignm ester En Continue S Intern	th CIA a ssessmen Interna ous Inter nents nd Exan nuous In nal Eval II	nt Desc Il Assess mal Eva nination nternal	A Studen ription sment (C lluation (h (SEE) Assessm (CIE) (6	2: Mode SSESSN ts learnin CIA) (CIE) ASSESS nent (CIA	MENT g will t	STRAT De assess Weighta 100 60 40 100 F DETA 6) Assigni ctivities	FEGY sed using ge (%) % % % AILS nent/ (40%)		and Inc	lirect me Max. 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 (Low) (Low) (Low) (Low) (Low) (SEF (So) (So) (SEF	E) (50%)
CO5 3 Assessm 5l. No. 1 2 Con	2 B: Subs Cont Cont Seme Linuou	1 stantial Il be bot Assignm ester En Continue S Intern	th CIA a ssessmer Interna ous Inter nents nd Exan nuous Ir nal Eval II abus Co	nt Desc Il Assess mal Eva nination nternal	A . Studen ription sment (C luation (h (SEE) Assessm (CIE) (6 I	2: Mode SSESSN ts learnin CIA) (CIE) ASSESS nent (CIA 50%) II	MENT g will t	STRA De assess Weighta 100 60 40 100 F DET Assigni ctivities	FEGY sed using ge (%) % % % NILS nent/ (40%)		and Inc	lirect me Max.	1 (Low) thods: Marks 50 30 20 50 am (SEI	E) (50%)
CO5 3 Assessm 5l. No. 1 2 Con	2 B: Subs Cont Cont Seme tinuou	1 stantial Il be bot Assignm ester En Continue S Intern	th CIA a ssessmen Interna ous Inter nents nd Exan nuous In nal Eval II	nt Desc Il Assess mal Eva nination nternal	A . Studen ription sment (C luation (h (SEE) Assessm (CIE) (6 I	2: Mode SSESSN ts learnin CIA) (CIE) ASSESS nent (CIA 50%)	MENT g will t	STRAT De assess Weighta 100 60 40 100 F DETA 6) Assigni ctivities	FEGY sed using ge (%) % % % XILS nent/ (40%) Coverage %		and Inc	End Exa	1 (Low) (Low) (Low) (Low) (Low) (SEF (So) (So) (SEF	E) (50%)
CO5 3 Assessm Sl. No. 1 2 Con	2 B: Subs Cont Cont Seme tinuou	1 stantial Il be bot Assignm ester En Continue S Intern	th CIA a ssessmer Interna ous Inter nents nd Exan nuous Ir nal Eval II abus Co	nt Desc Il Assess mal Eva nination nternal	A . Studen ription sment (C luation (h (SEE) Assessm (CIE) (6 I	2: Mode SSESSN ts learnin CIA) (CIE) ASSESS nent (CIA 50%) II	MENT g will t	STRA7 De assess Weighta 100 60 40 100 F DETA 6) Assigni ctivities	FEGY sed using ge (%) % % % % MILS nent/ (40%) Coverage %		and Inc	lirect me Max. Syllabus 10	1 (Low) ethods: Marks 50 30 20 50 am (SEF Covera 0%	E) (50%)

COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

		MIV	MIV	MIV
		MV	MV	MV
Note: For Exami	inations (both CL	E and SEE), the	question papers shall	contain the questions mapped to the

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. "One Nation Under Drones: Legality, Morality, and Utility of Unmanned Combat Systems" by John E. Jackson.
- 2. Lillesand and Kiefer, "Remote Sensing and Image Interpretation", 5th Edition, published by John Wiley and Sons, 2008.
- 3. A.M. Chandra, S.K. Ghosh, "Remote Sensing and Geographical Information System", Narosa Publishing house, 1st Edition, 2007.
- 4. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc.
- 5. Terry Kilby and Belinda Kilby, "Make:Getting Started with Drones ",Maker Media, Inc, 2016
- John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016
- Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://www.dronedeploy.com/resources
- 2. https://www.techtarget.com/iotagenda/definition/drone

BLOCK CHAIN AND APPLICATIONS

(Effective from the Academic Year 2023 - 2024)

X7T	SEMESTER	
v	SHIVENSTER	

VI SEMESTER						
Course Code:	21CS651	CIA Marks	50			
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50			
Total Hours of Pedagogy	40L	Exam Hours	03			
CREDITS – 3						

COURSE PREREQUISITES:

• Fundamental knowledge of Mathematics, Data Structures, Networking

COURSE OBJECTIVES:

- Explore the concepts of Blockchain, cryptography behind the blockchain
- Understanding the technology behind bitcoin, Ethereum, smart contract and Hyper ledger

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS MODULE - I

Introduction to Blockchain Technology: Distributed systems , The history of blockchain , CAP	
theorem and blockchain, Benefits and limitations of blockchain, Decentralization using blockchain ,	8 Hours
Methods of decentralization, Routes to decentralization.	
MODULE - II	
Cryptography in Blockchain: Introduction, cryptographic primitives, Asymmetric cryptography,	8 Hours
public and private keys ,RSA, ECC , Hash functions, financial markets and trading.	
MODULE - III	
Bit Coin Introduction, Transactions: Structure ,Transactions types , The structure of a block, The	
genesis block, The bitcoin network, Wallets and its types, Bitcoin payments, Bitcoin investment and	8 Hours

buying and selling bitcoins, Bitcoin installation, Bitcoin programming and the command-line interface

3: Substantial (High)

, Bitcoir	n improvement proposals (BIPs).							
	MODULE - IV							
Ethere	um : Ethereum block chain, Ethereum network, Components of the Ethereum ecosystem, Keys and	1						
Address	es, Accounts and its types, Transactions and Messages, Contract Creation transaction, Message	è						
call trans	saction, messages ,Calls, Transaction Validation and execution, Transaction substrate, State storage	;						
in the Et	hereum blockchain, Ether cryptocurrency / tokens (ETC and ETH), The Ethereum Virtual Machine	è						
(EVM),	Execution environment, Native contracts							
	MODULE - V	-						
Smart	Contract and Hyper ledger: Ricardian contracts, Application developed on Ethereum. The	;						
DAO								
Hyper	ledger: Hyper ledger projects, Hyperledger as a protocol, The reference architecture,	,						
Require	ments and design goals of Hyperledger Fabric, Applications on blockchain on fabric,	,						
Consens	sus in Hyperledger Fabric, The transaction life cycle in Hyperledger Fabric, Sawtooth lake,	,						
Corda A	architecture.							
	COURSE OUTCOMES							
Upon co	mpletion of this course, the students will be able to:							
СО								
No.	Course Outcome Description							
CO1	Apply basic concepts of Blockchain and evaluate the benefits and limitation of Blockchain.							
CO2	Examine the decentralization concepts and apply thee cryptography techniques in Blockchain.							
CO3	Demonstrate the structure, usage, wallet transaction and installation of Bitcoin.	_						

SAł

FNGIN

IYADRI

RING An Autonomous Institution MANGALURU

& MANAGEMENT

8 Hours

8 Hours

Bloom's

Taxonomy

Level

CL3

1: Poor (Low)

CO2 F CL3 CO3 Ι CL3 CO4 Demonstrate Application development using Ethereum. CL3 CO5 Illustrate the usage of Smart contract and architecture of Hyperledger. CL3 **CO-PO-PSO MAPPING** Programme CO **Programme Outcomes (PO)** Specific No. **Outcome** (**PSO**) 1 2 3 4 5 7 8 9 10 11 12 2 6 1 **CO1** 3 3 2 1 2 2 2 2 **CO2** 3 3 2 2 2 1 2 2 **CO3** 3 3 2 2 1 2 2 2 2 **CO4** 3 3 2 2 2 2 1 2 2 **CO5** 3 3 2 2 1 2 2 2 2

ASSESSMENT STRATEGY

2: Moderate (Medium)

Assessment will be both CIA and SEE. Students learning will be assessed using Direct and Indirect methods:

Sl. No.	Assessment Description		Weightage (%)	Max. Marks		
1	Continuous Internal Assessment (CIA) Continuous Internal Evaluation (CIE) Assignments		Continuous Internal Assessment (CIA) 100 %		50	
			60 %	30		
			40 %	20		
2	Semester	· End Examinatio	on (SEE)	100 %	50	
			ASSESS	MENT DETAILS		
	Co	ntinuous Interna	l Assessment (CIA	A) (50%)		
Continuous Internal Evaluation (CIE) (60%)			n (CIE) (60%)	Assignment/	Semester End Exam (SEE) (50%)	
	_ 1			Activities (40%)		
]		II	III			
	S	yllabus Coverage	2	Syllabus Coverage	Syllabus Coverage	
40	%	30%	30%	100%	100%	
Μ	11			MI	MI	
М	III	MII		MII	MII	
		MIII		MIII	MIII	
			MIV	MIV	MIV	
			MV	MV	MV	

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

1. Bashir, Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained,

2nd Edition, 2nd Revised edition. Birmingham: Packet Publishing, 2018.

- 2. A. M. Antonopoulos, Mastering bitcoin, First edition. Sebastopol CA: O 'Reilly,2015.
- Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, —An Overview of Blockchain Technology: Architecture, Consensus, and Future Trends in 2017 IEEE International Congress on Big Data (Bigdata Congress), 2017, pp.557–564

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://ethereum.org/en/
- 2. https://www.blockchain.com/explorer

COMPUTER VISION

(Effective from the Academic Year 2023 - 2024)

(
VI SEMESTER							
Course Code	21IS652	CIA Marks	50				
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50				
Total Hours of Pedagogy	40L	Exam Hours	03				
CREDITS – 3							

COURSE PREREQUISITES:

• Fundamental knowledge of Image Processing.

COURSE OBJECTIVES:

- To understand the fundamental concepts related to Image formation and processing.
- To learn feature detection, matching and detection
- To become familiar with feature-based alignment and motion estimation.
- To develop skills on 3D reconstruction.
- To understand image-based rendering and recognition

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS MODULE - I

Introduction to Image Formation and Processing: Computer Vision - Geometric primitives and
transformations - Photometric image formation - The digital camera - Point operators - Linear filtering -
More neighborhood operators - Fourier transforms - Pyramids and wavelets - Geometric transformations -
Global optimization.8 Hours

MODULE - II

 Feature Detection, Matching and Segmentation: Points and patches - Edges - Lines - Segmentation 8 Hours

 Active contours - Split and merge - Mean shift and mode finding - Normalized cuts - Graph cuts and
 6

				~										
energy-b	based n	nethods.												
						Ν	IODUL	E - III						
Feature	Based	l Alignr	nent an	d Motio	on Estin	nation:	2D and	3D featu	re-based	l alignn	nent - P	ose estir	nation	8 Hours
- Geome	etric in	trinsic c	alibratio	on - Tria	ngulatio	n - Two	-frame s	structure	from mo	otion - I	Factoriz	ation - E	Bundle	
adjustme	ent - C	onstrain	ed struc	ture and	l motion	- Trans	lational	alignme	nt - Para	metric	motion	- Spline	-based	
motion -	Optic	al flow -	- Layere	d motio	n.									
				-			IODUL							-1
3D Rec			-			-		•		-			-based	8 Hours
represen	tations	- Volun	netric rej	presenta	tions - N	Model-ba	ased rec	onstruct	on - Rec	overing	g texture	e maps.		
							AODUI							
Image-	Based	Rende	ring and	d Recog	gnition:	View in	nterpola	tion Lay	ered dep	oth imag	ges - Li	ight field	ds and	8 Hours
Lumigra	phs - I	Environ	ment ma	attes - V	/ideo-ba	ised ren	dering-C	Object de	etection	- Face	recognit	tion - In	stance	
recogniti	ion - C	ategory	recogni	tion - C	ontext a	nd scene	e underst	tanding-	Recogni	tion dat	tabases	and test	sets.	
								JTCOM	IES					
Upon co	mpleti	on of th	1s course	e, the stu	idents w	ull be at	ole to:						<u> </u>	Bloom's
CO No.	Course Outcome Description							Taxonomy Level						
CO1	To u	nderstar	nd basic	knowled	dge, theo	ories and	l method	ls in ima	ge proce	ssing a	nd com	puter vis	ion.	CL2
CO2								essing te						CL3
CO3	To a	oply 2D	a featur	e-based	based in	nage ali	gnment,	segmen	tation an	d motio	on estim	nations.		CL3
CO4	To aj	oply 3D	image r	reconstru	uction te	chnique	s.							CL3
CO5	To d	esign an	d develo	op innov	vative in	nage pro	cessing	and com	puter vis	ion app	olication	ıs.		CL4
						CO-P	D-PSO	MAPPI	NG					
														rogramme
CO No.					Progr	amme	Outcom	nes (PO)					Specific come (PSO)
190.	1	2	3	4	5	6	7	8	9	10	11	12		· · ·
CO1	3	1	1	1	1		,	0	2	1	3	2	2	
CO2	3	3	3	2	3		1		2	1	2	2	3	1
CO3	3	3	2	2	3				1	1	2	2	3	2
CO4	2	3	3	2	3				2	1	2	3	2	
CO5	2 8: Sub	3 stantial	3 (High)	2	2	2 2: Mod	erate (N	/ /Iedium	3	1	2	3 1: Poor	(Low)	
<u> </u>		minal	(mgii)		1		`	,				1, 1, 001	(1011)	
Assessm	nent wi	ll be bot	th CIA a	and SEE				STRA be assess		g Direct	and Inc	lirect me	ethods:	
Sl. No.	~		ssessme			AT 4.5	· · · ·	Weightage (%) Max. Mark						S
1			Internations Inter			,		100 60					50 30	
	1	Assignm	nents			(2)		40	%				20	
2	Sem	ester Er	nd Exan	ninatior				100					50	
								T DETA	AILS					
		Conti	nuous Iı	nternal	Assessn	nent (C	[A) (50%	%) Assigni	nent/	Se	mester	End Ex	am (Sl	EE) (50%)
Con	tinuou	s Interi	nal Eval	luation	(CIE) ((50%)	А	Assign						
			II			II				1				

	Syllabus Coverage	2	Syllabus Coverage	Syllabus Coverage
40%	30%	30%	100%	100%
MI			MI	MI
MII	MII		MII	MII
	MIII		MIII	MIII
		MIV	MIV	MIV
	MV		MV	MV

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIGNMENT TYPES WITH WEIGHTAGES

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer- Texts in Computer Science, Second Edition, 2022.
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, Second Edition, 2015.
- 3. Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge University Press, March 2004.
- 4. Christopher M. Bishop; Pattern Recognition and Machine Learning, Springer, 2006.
- 5. E. R. Davies, Computer and Machine Vision, Fourth Edition, Academic Press, 2012.

REFERENCE WEB LINKS AND VIDEO LECTURES (E - RESOURCES):

- 1. https://opencv.org/opencv-free-course/
- 2. https:// docs.opencv.org

CRYPTOGRAPHY AND NETWORK SECURITY (Effective from the Academic Year 2023 – 2024)

VI SEMESTER							
Course Code21IS653CIA Marks50							
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50				
Total Hours of Pedagogy	40L	Exam Hours	03				
CREDITS – 3							

COURSE PREREQUISITES:

• Fundamental knowledge of Cryptography Theories and Network security.

COURSE OBJECTIVES:

- This course is aimed at providing students with a practical and theoretical knowledge of cryptography and network security.
- To develop an understanding of different cryptographic protocols and techniques.
- To understand methods for authentication, access control, intrusion detection and prevention. •

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations

Message Authentication – Requirements and Functions.

- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses

 Any other innovative initiatives with respect to the Course contents 							
COURSE CONTENTS							
MODULE - I							
Introduction to Network Security: Introduction - Need for Security, Security Approaches, Principles of Security, Security services, Types of Attacks – General View - Technical View,	8 Hours						
Programs that Attack, Specific Attacks.							
MODULE - II							
Basics of Cryptography and Encryption: Introduction to Cryptography, Plain Text and	8 Hours						
Cipher Text, Symmetric Cipher Model, Cryptography, Cryptanalysis, Brute Force Attacks,							
Substitution Techniques - Caesar Cipher and Modified Caesar Cipher, Mono Alphabetic							
cipher, Poly-Alphabetic Cipher, Playfair Cipher, Transposition Techniques- Rail Fence							
technique, Simple Columnar transposition Technique.							
MODULE - III							
Block ciphers and Data encryption standards: Stream ciphers Block ciphers, Data	8 Hours						
Encryption Standard, a DES example, AES- structure, AES transformation functions.							
MODULE - IV							
Public key cryptography and RSA: Principles of public key cryptosystems - public key cryptosystems - applications for public key cryptosystems, RSA algorithm - algorithm and	8 Hours						

example. Cryptographic Data integrity algorithms - Cryptographic Hash functions - applications,

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

							М	ODUL	E V					
Applica cloud, Wireles S/MIM	cloud ss net	secur	ity as	a serv	ice, W	eb/Inter	y: Clonet se	oud con ecurity	mputing protoco	ols- H	TTPS,	SSL,	SSH,	8 Hours
Legal		Ethica	l issue	es- Int	roductio	on to (Cybero	crime a	& com	puter	crime,	Intelle	ctual	
property							•							
								JTCOM	IES					
Upon co	mpleti	on of th	is course	e, the st	udents w	ill be abl	e to:							Bloom's
CO No.		Course Outcome Description												Taxonomy Level
CO1		erstand erabili		ndame	ntals of	networ	ks sec	urity, s	ecurity	archite	ecture,	threats	and	CL2
CO2		ly the rithms.		erent	cryptog	raphic	opera	tions	of syr	nmetr	ic cry	ptograp	ohic	CL3
CO3		•				c opera			•	• • •	<u> </u>			CL3
<u>CO4</u>						n schem						ns.		CL3
CO5	Und	erstanc	i variou	s Secu		ctices a	-		-	andaro	18.			CL4
	T					CO-PO	-PSU	MAPP	ING				Due	
CO No.		Programme Outcomes (PO)										S O	rogramme Specific Outcome (PSO)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	1	1	1				2	1	3	2	2	1
CO2	3	3	3	2	3		1		2	1	2	2	3	1
<u>CO3</u>	3	3	2	2	3				1	1	2	2	3	2
CO4 CO5	22	3	3	2	3	2			2	1	2	3	$\frac{2}{3}$	2
	_	-	(High)			- <i>Mode</i>	rate (1	 Mediur	-	1	_	: Poor	5	_
Assessr method		vill be	both Cl	[A and	AS	SESSN	IENT	STRA	TEGY	ssed u				
Sl. No.					cription		V	Veighta	nge (%)			Max.	Mark	s
1	Con (CLA		s Inter	nal As	sessme	nt		100	%			5	50	
	-			nal Ev	aluatior	(CIE)		60					80	
2		Assign		omina	tion (S	615 1	_	40					20 50	
4	Sem	ester I		amma	tion (S) A	EE) SSESS	MEN'	100 T DET		<u> </u>			v	
	C	ontinu	ous Int	ernal	Assessr	nent (C	EIA) (5	50%)		Se	mester	r End E	Cxam ((SEE)
Contin						(60%)		Assign	ment/ s (40%)	(5	0%)			-
]	[II			II			、 <i>、</i>					
4.0		Sylla	bus Co	verage		0/	Syl		Coverag	ge	Sy	vllabus		rage
	9% 11		30%		30	%		100 [°]					0%	
N	MI MI								1			N	/II	

SAHYADRI COLLEGE OF ENGINEERING & MANAGEMENT An Autonomous Institution MANGALURU

MII	MII		MII	MII
	MIII		MIII	MIII
		MIV	MIV	MIV
		MV	MV	MV

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

ASSIG	ASSIGNMENT TYPES WITH WEIGHTAGES											
Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks									
1	Written Assignments	25 %	05									
2	Quiz	10 %	02									
3	Case Studies	25 %	05									
4	Seminar/Presentation	15 %	03									
5	Peer - to - Peer Learning	10 %	02									
6	Activity Based Learning	50 %	10									
7	Project Based Learning	50 %	10									
8	Field Work + Report	50 %	10									
9	Industry Visit + Report	50 %	10									
10	NPTEL/MOOC Courses – Registration and Assignment Submissions	50 %	10									
	NPTEL Certification	75 %	15									
11	Any other Innovative Assignments (CL4 and above)	50 %	10									

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands

SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

TEXT BOOKS:

- 1. AtulKahate, Cryptography and Network Security, 4th Edition, 2019
- 2. William Stallings, Cryptography and Network Security: Principles and Practices, 7th Edition, 2019.
- 3. Nina Godbole and SunitBelapure, Cyber Security, 1st Edition, 2019.

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER										
Course Code	21CS654	CIA Marks	50							
Number of Contact Hours/Week (L: T: P: S)	3:0:0:0	SEE Marks	50							
Total Hours of Pedagogy	40L	Exam Hours	03							
CREDITS – 3										

COURSE PREREQUISITES:

• Fundamental software development life cycle, Object orientation principles and modeling

COURSE OBJECTIVES:

- Learn How to add functionality to designs while minimizing complexity.
- What code qualities are required to maintain to keep code flexible?
- To Understand the common design patterns.
- To explore the appropriate patterns for design problems

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

COURSE CONTENTS							
MODULE - I							
Introduction to design pattern: Describing, the catalog of, organizing the catalog, solve design	8 Hours						
problems, select and how to use - design pattern. A Notation for Describing Object-Oriented							
Systems							
Analysis a System: overview of the analysis phase, gathering the requirements functional							
requirements specification, defining conceptual classes and relationships, using the knowledge of							
the domain. Design and Implementation.							

MODILLE Π

							MOD							
Design	Patt	ern Ca	atalog:	Struct	tural p	atterns,	Adap	ter, bri	idge, c	omposi	te, dec	corator	, facade,	8 Hours
flyweig	ght, pr	oxy.												
							MODU	ULE - I	III					
Behav	ioral	Patter	ns: Cl	hain o	f Resp	oonsibil	ity, C	ommar	nd, Int	erprete	r, Itera	ator, N	Mediator,	8 Hours
Meme	nto, Ol	oserver	, State,	Templ	ate Me	thod								
T 4			1		10		MOD	-	-		1 1 •		1	0.11
Interactive systems and the MVC architecture: Introduction, The MVC architectural pattern, analysing a simple drawing program, designing the system, designing of the subsystems, getting												8 Hours		
analysi	ing a s	imple of	drawing	g progr	am, de	signing	; the sy	stem, c	designi	ng of th	ne subs	ystems	s, getting	
into in	nplem	entation	n, impl	ementi	ng und	lo oper	ation,	drawin	ig inco	mplete	items,	addin	g a new	
feature	, patte	rn-base	ed solu	tions.	Case st	tudy on	Movi	ng fron	n MVV	/M to 1	MVC A	Archite	ecture: A	
Case S	tudy ii	n Andro	oid											
							MOD	ULE –	·V					l
Design	ing w	vith Di	istribu	ted Ol	ojects:	Client	server	system	m, java	a remo	te met	hod in	vocation	8 Hours
(RMI),	imple	ementir	ng an c	object-o	oriente	d system	m on t	he web	b. Web	Servio	es ver	sus Di	stributed	
Object	s: A C	ase Stu	dy of F	Perform	ance a	nd Inte	rface D	esign.						
						COI	JRSE	ουτο	OME	2				
		1.1	6.1.1							5				
Upon	the cor	npletioi	n of this	s course	e, the st	udent sl	hall be a	able to:						
CO No.						CC) Descr	iption						Bloom's Taxonomy Level
	Unde	erstand	the bas	ic conc	epts of	design	pattern	and id	entify s	state &	behavi	or of re	eal-world	CL2
CO1	objec	ets.												
CO2	Inter	pret the	Structu	ıral des	ign pat	terns for	r develo	oping de	esign p	attern ca	atalog.			CL2
CO3	Inter	pret the	Behavi	ioral de	sign pa	tterns fo	or deve	loping o	design	pattern	catalog.			CL2
CO4	Expl	ain inte	ractive	system	and ill	ustrate t	he roles	s of MV	VC in re	eal worl	d probl	ems		CL3
CO5	Desc	ribe clie	ent serv	ver, RM	I and in	npleme	ntation	of OOS	S on the	e web.				CL3
						CO-I	PO-PS	O MA	PPIN	G				
СО				PF	ROGRA	AM OU	TCOM	IES (P	Os)					OGRAM ECIFIC
No.	1		2	4	_		-	0	0	10	11	10	OUTCO	MES (PSOs)
CO1	<u>1</u> 2	2 1	3	4	5	6	7	8 2	9 1	10	11	12 2		
CO2	2	2	2		2	1		2	2	2	2	2		
CO3	2	2	2	1	2			2	2	2	1	2		
CO4	2	2	2	1	2			2	3	3	2	2		
CO5	2	2	2	1	2	ASSES	2 SMEN	2 JT STI		3 CV	2	2		
1	Assessr	nent wi	ll be bot	th CIA a							sing Dir	rect and	l Indirect m	ethods:
Sl. No.			A	ssessme	ent Des	cription	l		V	Veighta	ge (%)		Max. I	Marks
1	Co	ntinuou	s Inter	nal Ass	essmen	t (CIA)				100	%		5	0
	C	ontinuo	us Inter	nal Eva	luation	(CIE)				60	%		3	0
	Α	ssignme	ents							40	%		2	0

2	Semester End Exam	ination (SEE)		100 %		50						
	ASSESSMENT DETAILS											
	Continuous Internal Assessment (CIA) (50%)											
Continu	ious Internal Evaluation	on (CIE (60%)	A agionmont/ A ativit	tog (100/)	Semes	ter End Exam (SEE) (50%)						
Ι	II	III	Assignment/ Activit	lies (40%)								
	Syllabus Coverag	ge	Syllabus Cove	rage	Syllabus Coverage							
40%	30%	30%	100%			100%						
MI			MI			MI						
MI	I MII		MII			MII						
	MIII		MIII			MIII						
		MIV	MIV		MIV							
		MV	MV M			MV						

MANAGEMENT

Autonomous Institution MANGALURU

Note: For Examinations (both CIE and SEE), the question papers shall contain the questions mapped to the appropriate Bloom's Level. Any COs mapped with higher cognitive Bloom's Level may also be assessed through the assignments.

Sl. No.	Assignment Description	Max. Weightage (%)	Max. Marks
1	Written Assignments	25 %	05
2	Quiz	10 %	02
3	Case Studies	25 %	05
4	Seminar/Presentation	15 %	03
5	Peer - to - Peer Learning	10 %	02
6	Activity Based Learning	50 %	10
7	Project Based Learning	50 %	10
8	Field Work + Report	50 %	10
9	Industry Visit + Report	50 %	10
	NPTEL/MOOC Courses – Registration and Assignment	50 %	10
10	Submissions		
	NPTEL Certification	75 %	15
11	Any other Innovative Assignments (CL4 and above)	50 %	10

Note: The assignments mentioned above may be provided appropriately to the students belonging to different bands SEE QUESTION PAPER PATTERN:

- The question paper will have **TEN** full questions from **FIVE** Modules
- There will be 2 full questions from each module. Every question will carry a maximum of 20 marks.
- Each full question may have a maximum of four sub-questions covering all the topics under a module.
- The students will have to answer FIVE full questions, selecting one full question from each module.

REFERENCE BOOKS:

- 1. Erich Gamma, Richard Helan, Ralph Johman, John Vlissides, Design Patterns, Pearson Publication, 2013.
- 2. Brahma Dathan, Sarnath Ramnath, Object-oriented analysis, design and implementation, Universities Press, 2013
- 3. Frank Bachmann, Regine Meunier, Hans Rohnert "Pattern Oriented Software Architecture" Volume 1, 1996.
- 4. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects in Crisis", John Wiley, 1998.

REFERENCE LINKS:

1. https://darrenfinch.com/moving-from-mvvm-to-mvc-architecture-a-case-study-inandroid/2.221587296_Web_Services_versus_Distributed_Objects_A_Case_Study_of_Performance_and_Interface

_Design

MACHINE LEARNING LABORATORY

(Effective from the Academic Year 2023 - 2024)

VI SEMESTER

	I								
Course Code	21AIL66	CIA Marks	50						
Number of Contact Hours/Week (L: T: P: S)	0:0:2:0	SEE Marks	50						
Total Hours of Pedagogy	20P	Exam Hours	03						
CREDITS – 1									

COURSE PREREQUISITES:

- Fundamental knowledge of statistics, probability, artificial intelligence and Python/Java programming.
- The algorithms can be written in Python/Java programming languages.

COURSE OBJECTIVES:

- To understand the basic concepts and techniques of Machine Learning through python programming.
- To develop skills of using recent Machine Learning packages for solving practical problems.
- To gain experience of doing independent study and research.

TEACHING - LEARNING STRATEGY:

Following are some sample strategies that can be incorporate for the Course Delivery

- Chalk and Talk Method/Blended Mode Method
- Power Point Presentation
- Expert Talk/Webinar/Seminar
- Video Streaming/Self-Study/Simulations
- Peer-to-Peer Activities
- Activity/Problem Based Learning
- Case Studies
- MOOC/NPTEL Courses
- Any other innovative initiatives with respect to the Course contents

LIST OF EXPERIMENTS

Exp. No.	Experiment Description	CO No.	Bloom's Taxonomy Level
1.	Implement and demonstrate the Find-S algorithm for finding the most specific hypothesis.	CO1	CL3
2.	Implement and demonstrate the Candidate Elimination algorithm using adata set stored as a .CSV file.	CO1	CL3
3.	Demonstrate data Preprocessing (Data Cleaning, Integration and Transformation) operations on a suitable data.	CO2	CL3
4.	Demonstrate the working of SVM classifier for a suitable dataset.	CO3	CL3
5.	Implement and demonstrate the working of the Decision Tree algorithm.	CO3	CL3
6.	Implement Randon Forest classifier using python programming.	CO3	CL3

7.	Dem	onstrate	e the tex	t classif	ier using	g Naive	Bayes	classifier	algorith	m.		CO4	(CL3
8.	-	lement t √ file.	he Naiv	e Bayes	ian clas	sifier fo	r a sai	nple traini	ng data	set store	ed as a	CO4	(CL3
9.			Bayesia es datase		ork to a	analyze	the d	iagnosis o	f heart	patients	using	CO4	(CL4
10.	Implement KNN classification algorithm with an appropriate dataset and analyze the results.												(CL4
						COUR	SE C	OUTCON	AES					
Upon co	mpleti	on of th	is course	e, the stu	udents w	vill be al	ole to:							
СО													1	Bloom's
No.					Cour	se Out	come	e Descrip	tion				Ta	axonomy
														Level
CO1	Demonstrate the concept learning problems with the hypothesis. CL3												CL3	
CO2	Illust	rate data	a pre-pro	ocessing	g operati	ons on c	latase	ts.						CL3
CO3	Imple	ement a	nd evalu	ate the j	perform	ance of	machi	ne learnin	g model	5.				CL3
CO4	Anal	yze the	use of B	ayesian	learning	g concep	ots in s	solving rea	l-world	problen	ns.			CL4
CO5	Desig	gn and a	inalyze d	lata clas	sificatio	n using	the K	NN algori	thm.					CL4
					(CO-PC)-PS() MAPP	ING					
СО														gramme
No.					Progr	amme	Outco	omes (PO)					-	ecific me (PSO)
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2		2				1	1		1		
CO2	3	3	2		2	1			1	1		1		
CO3	3	3	2	1	2	1			1	1		1		
CO4	3	3	3		2	1			1	1		1		
CO5	3	3	3		2	1			1	1		1		
3:	: Subs	tantial	(High)		2	2: Mod	erate	(Medium)		1	: Poor ((Low)	
As	ssessm	ent will	be both	CIA an				T STRA		d using	Direct a	and Indir	rect meth	ods:
Sl. No.		As	ssessme	nt Des	cription	l		Weight	age (%)			Max.	Marks	

1	Continuous Internal Assessment (CIA)	100 %	50
	Laboratory Work (A)	50 %	25
	Laboratory Test (B)	30 %	15
	Open Ended Experiments /Mini Projects (C)	20 %	10
2	Semester End Examination (SEE)	100 %	50

ASSESSMENT STRATEGY:

I. In Laboratory Courses where (B) and (C) are not the components of the assessment pattern, then (A) will have 100% weightage (50 Marks).

Assessment Mode: Weekly Assessment of Laboratory Work (50 Marks) - the marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment, each of 25 marks) of the students in each laboratory session. The average of all the marks obtained across the sessions will be the Final CIA marks.

II. In Laboratory Courses where (C) is not a component of the assessment pattern, then (A) will have 50% weightage (25 Marks), and (B) will have 50% weightage (25 Marks).

Assessment Mode: The marks will be awarded based on the Continuous Internal Assessment (Weekly Assessment) (A) and One Laboratory Test (B).

- In Weekly Assessment, the student will be evaluated in each laboratory session for 25 marks. The average marks obtained across all the experiments will be the marks obtained for (A).
- A Laboratory Test, similar to the SEE exam is conducted towards the end of the Semester/Course, whichever is earlier. The obtained marks are scaled down to 25 Marks (B)

The Sum of marks obtained across (A) and (B) will be the Final CIA marks.

- III. In Laboratory Courses where (C) is a component of the assessment pattern, then assessment will be done by considering the weightages given above, i.e. (A) 25 Marks (Weekly Assessment), (B) 15 Marks (Laboratory Examination), (C) 10 marks (Open Ended Experiments/Mini Projects)
 - The respective course instructor will design the assessment criteria for the said assessment components.
 - The assessment components will be made known to the students by the respective Course Coordinators prior to the commencement of the Laboratory Work.

In all the cases, the assessments will be done based on the criteria designed by the Course Coordinator.

SEE QUESTION PAPER PATTERN:

- 1. All laboratory experiments should be included for practical examination, from which students are allowed to pick one experiment from the lot.
- 2. SEE shall be conducted for 100 Marks and the marks will be scaled down to 50.
- 3. General Marks Distribution: Procedure + Conduction + Viva = 20% + 50% + 30%.

Change of experiment is allowed only once and 20% of the marks allotted to the Procedure will be made ZERO (if a question carries two experiments, both should be changed). The evaluation will be done for 80% of the total maximum marks.

REFERENCE WEB LINKS AND VIDEO LECTURES (E – RESOURCES):

- 4. https://onlinecourses.nptel.ac.in/noc23_cs18
- 5. https://onlinecourses.nptel.ac.in/noc23_cs87